skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Müller-Hermes, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let$$\phi $$ ϕ be a positive map from the$$n\times n$$ n × n matrices$$\mathcal {M}_n$$ M n to the$$m\times m$$ m × m matrices$$\mathcal {M}_m$$ M m . It is known that$$\phi $$ ϕ is 2-positive if and only if for all$$K\in \mathcal {M}_n$$ K M n and all strictly positive$$X\in \mathcal {M}_n$$ X M n ,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ ϕ ( K X - 1 K ) ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) . This inequality is not generally true if$$\phi $$ ϕ is merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ Tr [ ϕ ( K X - 1 K ) ] Tr [ ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) ] holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results. 
    more » « less